il

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

TECHNICAL NOTE 2252

FORMULAS FOR SOURCE, DOUBLET, AND VORTEX
DISTRIBUTIONS IN SUPERSONIC WING THEORY

By Harvard Lomax, Max. A. Heaslet,
and Franklyn B. Fuller

Ames Aeronautical Laboratory
Moffett Field, Calif.

Reproduced From
- Best Available Copy

Washington
December 1950 -

DISTRIEUTION STATEMENT A

Approved or Public Release 2 0 0 0 0 8 1 6 1 2 2
Distribution Unlimized
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IN SUPERSONIC WING THEORY

By Harvard Lomax, Max. A. Heaslet,
and Franklyn B. Fuller

SUMMARY

The formulas of supersonic wing theory for source, doublet, and
vortex distributions are reviewed and a systematic presentation is
provided which relates these distributions to the pressure and to the
vertical induced velocity in the plane of the wing. It is shown that
care must be used in treating the singularities involved in the analysis
and that the order of integration is not always reversible. Further, it
is -shown that the use of the complex varigble can often facilitate the

- calculation of the integrals involved. Certain special appllcatlons are

included to illustrate the concepts presented.

INTRODUCTION

One of the most fundamental approaches to the analytical investigae—
tion of linearized wing theory, throughout the subsonic and supersonic
Mach nunber range, stems from the use of certain elementary mathematical
expressions which are identified physically with sources, doublets, and
vortices in the fluid medium. By means of these expressions, boundary—
value problems involving wings with thickness, camber, and angle of
attack can be solved. These problems are divided into two categories:
one, involving symmetrical bodies with thickness and no 1lift, is analyzed
by means of source distributions; and the other, involving lifting plates
without thickness, is analyzed by means of doublet and vortex distribu—
tions.

All these distributions require the treatment of singularities in
the mathematical analysis. Thus, for subsonic Mach numbers, the concept
of Cauchyts principal part plays an important role in the calculation of
integrals arising in the development of lifting—line and two—~dimensional
section problems. In supersonic wing theory, the Cauchy principal part
is again used in the treatment, for example, of conical—flow problems as
in reference 1, but, because of the Mach lines and cones appearing in
the physical flow and in the hyperbolic geometry of the differential

~equation, other techmiques in handling #mproper integrals are needed.
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The integrals in supersonic wing theory thus require, in general, more
careful attention to the discontinuities in the integrand and, as an
illustration, indiscriminate use of such standard devices as inversion
of the order of integration may lead to incorrect results.

When problems of the first kind are involved, that is, when pre—
scribed distributions are to be integrated (as for the problem of finding
the pressure on & wing with symmetrical thickness), a guide to the proper
method of calculation is often furnished by physical intuition. However,
when problems of the second kind asrise, that is, problems, the solution of
which depends upon the inversion of an integral equation (as the flat
plate of arbitrary plan form), the mathematical methods are more abstract.

The purpose of the present report is: first, to review the formulas
of linearized wing theory in which source, doublet, and elementary-
vortex distributions are introduced and to relate these distributions to
the pressure and to the vertical induced velocity in the plane of the
wing; second, to show that the use of the complex variable can often
facilitate the calculation of the integrals involved; and finally, to
present certain special applications which will illustrate the basic
concepts. ‘

LIST OF IMPORTANT SYMBOLS

v

Cp pressure coefficient <-—2 _u_)
Vo

Mo free—stream Mach nunber

Op

— loading coefficient (pressure on the lower surface minus pressure

4 on the upper surface divided by free—stream dynamic pressure)
q free—stream dynamic pressure <% Po V02>
r. hyperbolic distance between points x,y,z end x31,¥1,0;
2 o2 Z R2. 2
r, =,/ (x=x1)% $%(y51)% B2
Vo velocity of the free stream

X,y,z Cartesian coordinates
r,s,z characteristic coordinates
€,n,z oblique coordinates

m; cotangent of the angle between the n and x axes



NACA TN 2252 “ 3

mp cotangent of the angle between the ¢ and x axes

M1 N 14m?®
Ha W 1+mao®

u perturbation velocity in x direction

W perturbation velocity in 2z direction

B J M2

A slope of stream surface (w/VO)

® perturbation velocity potential

A ‘jump in value of the quantity considered across the z =0 plane
) Subscript

u value of a quantity on the upper surface of a wing (z = O plane)

CENERAL THECRY

It is well known that the analysis of thin wings at supersonic
speeds and at small angles of attack can be expressed in mathematical
terms as a boundary-value problem for the wave equation. If O repre—
sents a velocity potential or any one of the velocity components them—
selves, this equatlon can be written

B2 Qyg — Qyy — 05, = 0 , (1)

where the z = 0 plane is the plane of the wing, the free-—stream veloc—
ity V, 1is directed along the x axis and BZ = Moz—l, My being the
free—stream Mach number.

Of the many ways of solving the boundary-value probléms associated
with the wave equation, the most convenient for the présent purpose is
the Volterra solution. In reference 1, a discussion was given of the
application to aerodynamic problems of Volterra's/ﬁethod. Thus, the

solution for Q in terms of AQ and Aﬁf% the jump in @ and its
gradient in crossing the z = O plane can Ye written, if
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re =y (xx1)2 2 (y-71)2 -p222 (2)

in the form

= J/‘J/Zr—-arc cosh
T o ox
1 9
i

X=X,

Xm dyl +

B (y=y1)2 + z°

z(x—x1) dx1 dyx

[(y=y1)2 + 23] r,

(3)

where the region T 1s that portion of the z = O plane lying within

the forecone from the point x,y,z

= 0).

(the forebranch of the hyperbola

Equation (3) represents a general solution to the yave equation and
has yet to be put in a form which represents directly a solution to a

problem arising in the study of wings.

When equation (3) is so adapted

in the next section, it will represent the velocity potential due to a
“distribution of sources, doublets, and elementary horseshoe vortices,
the strength of which are given in terms of the wing shape and loading.

The following study of the adaptation of equation (3) to the partic—
ular boundary—value problems of wing theory requires the introduction of

Vo

X=M1Yy

|

two axial systems other than
the x,y,z Cartesian coordi—
nates already defined. First,
the ¢,n,2z coordinate system

is defined so that z 1is normal
to the plane of the wing while
E:n are both normal to =z

i.e., lie in the plane of the
wing) and make arbitrary angles
with the x,y system (see sketch).
If

1=/ 1m2, pp =,/ 14mx®  (4)

The equations which relate the
g’ Tl,z to the X,y,Z System
ere
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s ) N
. o nmy, 4 e £ = pa(x-my)
H1 M2 Cmytmp

y=ll_;_§_ n=u§x_+n_la¥l> : (5)’

H 1 Ko m; -+

J

and the Jacob:"Lé.n, the relation between the differential areas in the two
systems, is ' :

mi+m2 4 o (6)

dx dy = d¢ dny
MiMk2

Finally,.the value of r. 1is tfa‘nsformed by the equation

(n=n1)%(m®8%)  2(n-n1)(e—g) (mme+B®) - (e—t1)2(me2—p2) |
ve =»/ 'l P-lzl - - guailtz - 7 - no? s

(7)

_ Second, the r,s,z coordinate
system is also defined so that _
Z 1s normal to the plane of o
the wing while r,s are both '
normal to z and lie along ‘L
the traces of the Mach cone = ‘
emanating from the origin ‘ 'T
(see sketch). It is apparent /.
~that the r,s,z coordinates / \

are a special case of the ¢m,z ~  X=—B¥— 3 " —x=fy

system formed when m;=m-=B. " /
(Notice also that the x,y,z /\
coordinates are obtained from \
£&N,2 when my=0 and mp=w,) r/ \s
The equations which relate Mach
r,s and z to x,y and =z

lines

are
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X = %% (s+r) r = ;% (z-By) 1
¥y = &z (s-r) s = g% (x+By) 5 (8)
z =z 7z = 2 )

end the Jacobian is

ix &y = > ar ds | (9)
M

The value of rc is transformed by the equation

re =,/ (42/M?) (r-r1) (s—s1) —8°2° (10)

THE THREE FUNDAMENTAL FORMULAS

As has been indicated already, the next purpose is to relate equa—
tion (3) to the three fundamental formulas arising in wing theory which
are those relating the velocity potential to source, doublet, and vortex
distributions. These distributions can be expressed in terms of the
discontinuity in either ¢ or its gradients in the plane of the wing.
In this way, the expression for a source distribution is obtained when
the perturbation velocity potential @ is an even function with respect
to the z = O plane and is expressed as & double integral involving '
A(d9/dz) where the A notation denotes the jump in the value of
d¢/dz 1in crossing this plane; that is

‘Ang i <:257[:-:>z=0+ - 253:L=0—‘

Similarly, a distribution of doublets 1is obtained when @ is an odd
function with respect to the 2z = O plane and 1is expressed as a double
integral involving A ®. Finally, a vortex distribution results when @
is an odd function and given as a double integral involving the loading
coefficlent A@/q which is, in turn, equal to 2A<PX/VO. In these

formulas &(dp/dz), Ap, and Ap/q  are, respectively, the strengths
per unit area of the sources, doublets, and elementary horseshoe vortices.
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The Source Distribution

The velocity potential at the point x,y,z of a unit source at the
point x3,y1,0 is given by the equation ¢ = — l/2nrc. The manner in
which a distribution of these sources affects the potential will now be
developed from equation (3). If, in equation (3), © 1is set equal to
the velocity potential, and the potential in turn is assumed to be
symmetrical above and below the x,y  plane (as in the case of a symmet—
rical airfoil at zero lift), then equation (3) becomes

XX
= a.rc cosh ——————————— d%; q]

Since the inverse hyperbolic term vanishes on the Mach forecone, the
partial derivative can be carried through the double integral sign and
there results

o (x,5,2) = — lffw dx; dyi (11)
7 T

where Wy 1s the vertical 1nduced velocity on the upper side of the
= 0 plane and A(d9/dz) = 2w, by reasons of symmetry. Equation (11)
is the familiar equation for the wvelocity potential due to a distribution

‘ of sources in the xy plane.

In the E,nm,z coordinate system equation (11) becomes

n3 +mp
T2

o (&,mz) = - fﬁ%ﬂ atr dany (12)
C

1

where the area T is transferred to the ¢,n plane, and r, is given

in these coordinates by equation (7).

The Doublet D istributionﬂ

The velocity potential at the point x,y,z of a doublet at the
point x31,¥1,0 1is given by the equation o= B z/Eﬂrcs. The effect on
the potential of a distribution of these doublets is not so obvious as
it was in the case of the sources and considereble care must be shown
in the development.
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If the vertical induced velocity is considered always to be equal
above and below the xy plane, but the potential to be discontinuous
across it, then equation (3) for the velocity potential becomes

o = 13 ffz(x—xl)ACP (x1,y1)dx1 dyy
en ox Jr [(y=y1)2+2%] r,

, In this case the integrand does not vanish at the Mach cone and the

partial derivative cannot be moved directly through the double integral
sign. Writing in the limits of integration so that the first integrationt
is made with respect to yai,

13 x-Bz Yo z(x—=x1) A ¢ (x1,y1)
P = %S¢ dxiy f dy:
X oo Y2 [(y—y1)2+22] Jf(x~x1)2-B2(y—y1)2—p32>
(13a)
where
Y, =y — %/ (x—x1)% B2
and
Yo =y + Bl- Mxx1)? 8227

If in the y1 integral =x; 1is replaced by the value =x-$z, the
result is indeterminate. Such an indeterminate form can be evaluated,
however, by excluding the limit =x-Bz from the area of integration.
Hence consider the integral

e .
: Y
14 1 9 xB./z +€ >

Q= 1m0 57 3¢ f dx; dyi

— I

z(x—=x1) Ag(x1,¥1)
[(y71)%+2%] ./(X—Xl)z—ﬁa(y—yl)z—ﬁzzz

1gince in what follows the order of integration is important, the nota—
tion will be sdopted that J[dy [ax £(x,y) = [ [[f(x,y)ax fdy; that is,
the integration is made first with respect to x. When the notation
[f £(x,y)dx dy is used, the order of integration is immaterial.
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. By formal manipulation

§p= 111;5 _z_fy+e J z2 +e2 Aop(x—B./ z2+62, YI)le ‘
€770 e y—€ [(y=y1)2+2%] «/52_(3’_29’1)2

1im 1 pEBN 2+ ) Tz
€0 7% f dx; == dy1

—00 Y,

z(z—x1) AQ (xl’)‘y:l.)
[(Y—Y1)2+22],/ (2-x1)3-B2(y-y1)2-p222 -

(13b)

Application of the mean value theorem to the first integral in equa—
tion (13b) yields

y+e , dyi
_1_1;10 —KA/Z +e2 Aq)(x—ﬁ Vz2ee?, y+6€)f
€ | | y—< [ (y-y1)2+221,/ €2—(y—yl)2

which becomes

: l
3_-30 QACP(X—BA/Z +€2 y+6€) = 'é'ACP(X-QZ:Y)

The seeond integral in equation (13b) is simplified by introducing
the notation of the finite part. Define the symbol f by the equation

J[a(X)a 25y ia—a-fa(X) £( )dy =9 a(x) f(y)dy
o Ox »\/'a._—;;-r 2 ox v

When applied to a single integrel this definition is consistent with the '
~usual ones for the finite part given as

(a5 72 32 Jo - Wey
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a f(y)dy a p(y)-f(a) £(a) 1 (y)dy £(o) N -
Y T gy =2
fo (a-y)®/2 ‘/c: (a~y)P/2 7 Ja [f v &y ' Ve J

However, when applied to double integrals an inconsistency with regard to
the order of integration between the two symbols [ and f arises.
Hadamard (reference 2) and Robinson (reference 3) both use the convention

that the order of integration in the operation Iff f(x,y)dy dx is
reversible; that is,

D dy [ ax £(x,y) = | J ax [ ay £(x,y)

Such a convention excludes from the area of integration all singularities
-over which the order of integration is not reversible. These singular
regions are then treated separately. This convention has the disadvantage
that, in constructing a series of integrals, the value of a given inte—
gral is not independent of succeeding integrals.

The operator -_,C avoids the above difficulty. The value of an inte-—

gral defined by ;;Loa f(y)dy is independent of succeeding operations.? At
the same time, however, the order of integration of operations involving
the sign jf- cannot be reversed. Hence

[ dy fax £(x,y) # [ax fay £(x,7)

2For exemple, according to reference 2
fg ——-E-Tl—-————— =0 )
o (E—ﬂ)a/ 2/ : ,

but according to the same .reference

x 4 dn
f at f 8 o
o o (e—n)*2 /7

However,

D¢ 3
fﬁ__in____ f dgj[ &
o 3/2 . Cow

S A
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Return now to the second integral in equation (13b). Applying the
uefinition already mentioned for f, it is found for this ‘type of inte—
gral that

3 A(x)+G(X) £(x,y) dy \fbA+G 3 [___fifﬁ!ﬁ.-—]dy

= Jax)-ax) JPAag)® = | /P (ay)?

By means of the last formula, the equation for @ becomes

P =-;-A<P(X—Bz,y) il f dx, J[dyl £9(x1,52) (1ka)
T Te .

where r, 1is given by equation (2).

Notice that if the mtegratlon had been made first wlth respect to
X1 the result would be

2 2
13 ™ By (y-y1) +z
-+ N o=

z(x—x1)A ¢(x1,¥1)
[(y-31)2+221,/ (x—%1)2—p2(y—31)2-pZ22

which reduces immediately to

ZB2 fdy f ax; A (:I:Yl) ’('1)4_-.0)
c

Equations (1l4a) and (14b) illustrate the vital importance of the
order of integration. In fact by subtraction the result can be derived
"that

' » q) T,
fd_n f dy ——?37'2' fdhf 1 3/2 Y A9 (x-$z,y)
T B

If the ¢,1n,2 coordlnates are used, equation (13) becomes in the
notation presented in equation (5)
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[(n—nl) — + (&—¢,) ——}Acpdnldgl

H2

i s ag) Jd [ o) 2= ee) 2 [ wer)re o

The limits of integration depend
now upon the position of the

axes - ¢ and 7 with respect to
the Mach lines in the x,y plane.
The area T 1s still bounded by
the curve r,2=0 and infinity.
The asymptotes for the curve
r.2=0 are given by the two eque-—

. E= —By " x=py tions
- 151 mo+f
n-m = — — (&-¢,)
/ 2 5 m; P
‘ (16)
351 m>—B
N S 11 = — == (&8y)
~ 1 2 m—f
P
asymptotes The sketch shows how the
area T in the xy plane trans—
fers to the ¢,q plane. 1In the
¢ m; < B case in which both m; and mo
mo < B are less than B (the case for

which the sketch was drawn), the
asymptotes are straight lines having positive slopes and the limits of
integration are always from one side of the cone to the other and from
minus infinity to some maximum value. Consider the case in which the
integration is made first with respect to mni. Then defining

my mo+B %
m.12 _B 2

Hib my +mp 2 >
I = e /[(§-§1)< = :l + 2%(my 2-p%)

Lo =1 '*"—' (§"§1)

(17)




, : | ™ Tm—_g (3wt T
o ATAI.EX.:TNS\( ‘ aal m\ ANN+ ﬁlﬂlm.ﬂrF Iulm.\,A vuﬂ W |
— ‘\) BULBY ) b zlz =2t (z8+2utu)z Trisg 0&—3
, yov S+ T 2 W—_d N~ (Sur+Tm) z L
N._”E.INQ Tuz T (zg+cwtw)zTm
, : mmaoomp Amﬁv.ﬂowpﬂsdo UT WISY 4SJITT 9L
*(9T) ﬁo..npwswo Jo qTuiT Jaddn ayg £Lq UeAT3 ST ,Hm USUM SNTBA S3T S99BOIPUT T oUq uo awrad oay3 aIsyus
(61) : ‘
? T (5-9) = () ‘ o
o; - = ._ =7 .Im c.m e - . %2
. T 9 .Hc..mv 4! + I .Il HM.@ T Sm+ T -
(FLr3)e v AH ~3) + =< ETS T+ %1 2 =Y e
‘ Su+ Tw T
. 22 + s — e (Tl
. %1 A LH Z g N2 T ( ) " VI=O7 AT ¥z 0 &3
T S _s\g ¢ L ? vpord TE WSO
NH.:H'N& \ NiN. ) NHE'NQ + .HJS. A v
snyy *(€T) UOT2
—enba J03 s® asnl sposooad Aw.mv uo1yenbe Jo qupgﬂwbw oy ‘*S7INSSI WIOJ 91BUTWISLSPUL U TBIZSQUT
Pm.ﬁm oug YSNoayg ueyB3 ST SATIBATISP 3§ OYL uaym Qdmwm °duLs > £q DPOSBOIOUT USQ SBY ZZ SUF SISYA
(gT) |
§ ‘ 2 T : :
D O340z + | — (F§=3) —(Tl=l :
nn”b_ AN ﬁ T A v H.A v ._...H.IO.H - mm T Ni/ xZ o€ 3
. 2o — : Tup ip Zu T s Tt T, T ¢
. oV |1A._..ml.mV + ..Wd (TU-L) . A Tm— +_2 Iu ¢
< 2w W (2 va\ANw 22) ;
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which reduces to N
§'A ? (ta,na)

where - , ’ / )
2 2
£ Zup o/ B —m

a m; Hip

e
fl

(20) |

zity (mymp+8%)

'q ——
(my+mp) f BE—m®
J

The second term in equation (19) simplifies when the finite—part notation
is introduced so that finally

Na =

T z8%(my +mp) A gy 1)
? = '2-Aq7(§a:ﬂa) ~ “mnns dilf dny ——;i'é-"‘ (21)

T

If the integration had been made first with respect to §,, the results
would have been

2
0 = Lao(tm) - L) fo, [ ag, 20ltim) (22)
2 e TRPIe T - T,
where
2y o/ BZ-me® )
o=t -
my +Mp
> (23)
no=n 2o (my me+8%)
.b = . e —————————— s
(my+mp) &/ BE—mo? )

The géometric interpretation of the points £y ,my, and E,,Ng s
as follows: They are the points at +wrhich the forecone in the &,7
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plane (given by one branch of the curve r2=0) attains meximum values
for n and ¢, respectively, (see sketch). :

"As the ¢ and 1 axes approach
the Mach lines in the x,y plane, that
is, as mp and my approach B, the
residue terms in equations (21) and (22)
approach (1/2)A (g4, and
(1/2)A (- ,qb), respectively, which
represent the Jjump in potential infi-
nitely far distant from the point P
(and hence may be taken as zero). Thus,
when the ¢,n axes lie along the Mach
lines, thereby becoming the r,s axes
of equations (3), the equations for g
are without the residue terms and the (¢, ,m.)
order of integration is immaterial. a’’a
When my and mp are greater than B
the same is true (i.e., the terms ¢
(1/2)8 9(egsmg) and  (1/2)A ¢(gy,m,) |
are missing from equations (21) and
(22), respectively), so that the effect
of a distribution of doublets on the
velocity potential can be summarized as
being

trace of -
forecone
in §,n plane

for 0<m <B, 0<m <=

A |
Q= %A@(éama) - Zzn(T::mE) délj[ ‘P( gl’“l) , (2ka)

for 0<m<B, 0 <m<w

21 k2

@ = L8 0(gym,) - 2olmine) fanlj{dgl‘l—?;——’l-‘rig’ D (ew)

for B <m < B <2 <w

o - Bz(m1+mz)fj[‘ A §1 ,111) _—— ' (2ko)

P22 (TR 113

where £g,1M4) £y, and Ny, &are given by equations (20) and (23).
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There exists the interesting corollary obtained by subtracting equa—
tion (24a) from (24b); namely, that the difference between an integration
of supersonic doublets made first in one order and then in the reverse is
equal to the difference in the magnitude of the distribution at two points
in the plane.

The Vortex Distribution

The velocity potential at the point x;,¥1,z of an elementary
horseshoe vortex dt the point x,,y3,0 is given by the equation
= —z(x—=x;)/2n [(y-=y1)2+z®%]r.,. If @ in equation (3) is taken to be
the induced velocity u 1in the direction of the free stream, and, as in
the case involving doublets, the flow field is considered to contain no
bodies with thickness (so A(du/dz) is everywhere zero), then equa-
tion (3) reads

u = g; g%\jckjﬁz(x—xl)Au dx;dy) (25)

[(y=y1)Z+2% Ir,
X
o- .

the potential for a distribution of vortices can be written

Now, since by definition

_L f [ et m)andy, | o)

(y—y1)2 +2®] r,

In terms of the £,n,z coordinates, equation (26) transformsvby
.simple substitution to the equality

my mo
(ml-{-me)z (T]_ﬂl) EI' + (g_gl) E Au(gl,rll)
T Pmuiun 4ty dm

{[(n—m) 'ul_l ~- (&¢,) 51-2- r; zz} i -
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APPLICATION OF FUNDAMENTAIL FORMULAS TO THE PLANE OF THE WING
Pressure in Terms of Slope for Symmetrical Bodies

Since in linearized theory the equations for pressure coefficient
and surface slope are

(28)

the equation for the source diétribution, equation (11), can be rewritten

as
>Vu(Xl:Yl)dxldYJ.
-ﬂaxff (29)

where Ay 1is the value of the slope on the upper surface of a symmetri-
cal body. In terms of the &,q,z system this becomes (compare the
transition from equation (13) to equation (15))

2/ 1 u(El:ﬂl)dﬁl dny :
CP_—<“2 571+u1 §—>ff S

In carrying the partial derivative through the integrals there results
(as in equation (19)) for © <m <P the equation

( 211z o/BEmy 2
(1 22T

o Lot+Lg?t € — —srm—
Cp = 1lim ———-L/n dna -
€> 0 ™IJL, 1! Te .
o m mo
TUIHe f £ J[ n r.8. gl’nl

T [+]

and this reduces to the expression
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for 0<m <B, 0<me <
-

2 2(m +me) £ (rma) + (83
= — ———— = Y
Cp B2__m12 )"u(ga)na) bz dgl dnl rca u(glﬂll)
(31a)
Similarly, for 0 < mp < B, 0<m < o
(nen1) + (e-¢)—
_ 2 (m1+m2) M1 1
R e A
(31b)
and for B <m <, p< mp<
(n=n1) — + (g=t.) —
2(my+ 1
Cp = — (my +mo ff = iz M( € ,m2) dgy dny (3lc)
MUK

where £.,7M,,8,, and 7, eare given by equations (20) and. (23)

As spécial cases of the results glven by equations (31), consider ¢
and 17 ‘to represent the x,y and the r,s eaxes, respectively. In the
former case, .x replaces Et &8s mp —> o and y replaces 1n as
m; —> 0; hence

C, = & Mlx-pz,5) - %fdxl J[Tdyl (X_Xl):ugxl’yl) (328)

Cc

and

Cp =~ % fdm][‘dxl (o Ml 9 ) (32b)
T

3
Te

In the latter case r replaces ¢ &s me—->B and s replaces 17 as
m; ~> B; hence
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- - : C. -QB fj[(r—rl)+(as—S1) Ay(T1,51) drids o (33)
, | ;

M-8
Mo r, '

Tn each of the equations (31) through (33), =z can be set equal to
zero without affecting the validity of the equalities. When =z vanishes,
the following identities hold

(&) = (Ba) o = | )
(1), = (M), o =0 | qED
(te),0 = To )
- © where '
- I (v W
ry = %%«/(r—rl)(s—sl) B ()

2]
]

' m, 2—B2
o A/(_""'rll-)z( . )

With these equations the pressure coefficient on the surface of a sym—
metrical nonlifting wing can be determined if the surface slope is given.
The spec1al cases of equations (31) in the plane z=0 and in the x,¥y
and r,s coordinate systems are given in the summary of this sectlon
(see equations (47) and (50)).

my Mo +B2 2 (W8
2 — ————
>+(n—n1)(§ ) (R Natey)2 (B2

Vertical Induced Velocity in Terms of the Jump in Potential

It is proposed next to find the vertical induced velocity in the
z=0 plane as a function of the jump in potential across that plane.

Conslder equations (2&) for the doublet distribution and take the
partial derivative with respect to z of both sides; then find the 1limit
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of the resulting expression as z goes to zero. If equation (2hka) is
used, for example, there results for the first term

lim

e\ - d A >
Z == 0 %%A(P(Ea:na)=l > —éé'Fl ({)) Ja
7

2\ 3¢, 500t 2 'a};'z_)O dz

which becomes

1 [ 2 2y O 2y O
- pa(B®m?®) — Ag(e,n)+i(mm+B®) — Ag(t n)]
2(my +me) &/ B2y 2 ot o ’
(36)
and for the second term
- lim D 28%(m+mp) Ag(e, ML)
2->0 5~ 2nuiu2 fdglf; dny rcg
But this reduces to
B (my4me) A p(E1,m1)
— [d¢ dn; ————— —
RIS 1 T r,B
Bo(mtme) i Ag(t,m)
_— N1 .
s (TR TP =0 Zazﬁglfdnl-_rzé,—_ (37)

and since
: Ao

jf dna -0
Mo [(va=1) (n1—0) 1872

the second term in expression (37) vanishes. Finally, therefore,lthe
vertical induced velocity in the plane of the wing w, becomes

for 0 < m <B, 0< < w
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‘ 1 ‘[ 2 24y 0 29
W= - pa(B%—m®)<— Ao (&,n)+uy (mymo+B )—-—ACP(-E,H)J-—
4 2(my +mp) of BE—m @ % o |
B2(mtme) [ f Ag(t1,m1) |
P AiTe) dny 8
2nugps J[agl T k ro® (36)
and similarly
for 0 <me <B, 0<m <o
Wy = — [H 1(BZ—mp 2)-—- A(p(g,‘q)+u2(m1m2+f32)—— A (E:T\):l
2(m1+m2)«/ B2—mo o on '
BZ(my +mo) I Ao (E1,m1) |
TR g ag, ———=21127 o 8b
T T]lJT 51 ‘ ‘1‘03' _ ’ (3 )
and for B <mp <o < m <
2
Wy = — B (mlifil I éi?jfﬂiﬂi_ dtq dﬂl (38¢c)

2R VR VRS J i

The special cases of equations (38) obtained when the &,n coordi—
nates represent the x,y or the r,s systems are given in the summary
of this section (see equations (48) and (51)).

Vertical Induced Velocity in Terms of the Loading

-

The equatlon for the loadlng coeff1c1ent in linearized theory can
be written

(39)
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so that equation (27) for the vortices yields for w, the expression

w - 1im o) (ml+mg)zVo %
u 22073 TR CTETTES

oo ¢ ) B2 Ap
(n—=n1) ot (e-t,) ” 2 (&;5m,)

lf{[ (n-n1) &l— ~ (&-¢,) i -J2+ 22} Te

The evaluation of wy can be divided into two steps; first, the pro—
cedure necessary for carrying the derivative through the first integral,
and second, the calculation of I where

df; dni (L4o)

1im (mi+m2)Vg «

I =
z—>0
bauapo

[(n—nl) E—i + (&-£) %J z %B (g,5m1)

3
”/; % f{ l:(Tl—’fu) L (e-t)) -“1“2—}2+ 22} e

Hi

Again the order of integration is important. To begin with, the
first integration will be taken with respect to N1. Further the case
0 < m< B will be considered. Hence, the equation for wy Dbecomes
(just as in the derivation of equation (18))

uz ¥ z2+e? W/B2m, ?

1im Va £E— Lo+la
Wy = z2—->0 ﬁ?iifil_g __\/P 3+ dglh/h dn,
€e~>0 bmugjun 3y /o Lo-Liy
m; mp éﬁ
.L(ﬂ—ﬂl) Y + (§—€l) ey } y Q (51:”1)

| (42)
{ ( (n-n2) i‘ - (&-t,) i r . 22} ro 2
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where the values of L, and 1I; are given by equation (17) and the
limit as e goes to zero is to be taken first. Equation (36) reduces
to

13 VOZ /B —IIll LO +L1
vy =30 u/\ M1
€ =0 ll-ﬂlull —Ll
82,2
(n=n1) Z + Zmzm‘+m2 : 2 (tasm)
= - = + I (43)
1 z NV BE—m; Z } N }_ ¢ ‘
‘{ { (n-n2) o Tmime + z

The guantity within the integral of the first term of equatlon (43) is
the same as the similar term in equation (19); hence by analogy

VO A/Bé—mlz N

iy = =S F (e,n) + 1 O

The evaluation of T réqulres some care. Con51der the following
integral which contains all the difficulties involved in I.

) b
1i s z£(y1,2)
Io = 7730 g“[';;*"‘i—jg. dya b>y>a
a 9z L 2%+(y=y1)

where f(y,z) and its derivative is bounded and cohtinuous in the inter—
val a <y <hb.

Integrating by parts

[ . lim ) [

' y—a ‘ N !)
0% z >0 8; f(a,z) grc tan -~ f(b,z) arc tan —— +

Z

yi

® d1(31,2) y=y1
) ~f—7§—i—— arc tan - dya




ol , NACA TN 2252

and since .

L
. f e b1
lim f ofz(ya,z) e ¥ dyy = nf,(y,0)— — |£5(a,0)+£5(b,0)
z >0 Jg dy1 z : e

this becomes

1, - 100 _fe) [P el o (0
a J—y1

It is, however, more convenient to write Iy, in terms of £(y1)
and not its derivative. In order to do this, it is necessary to intro—
duce another notation involving singular integrals. The concept of
Cauchy's principal part is adopted and defined in the following way:

b £y, )a > P
f —S-y—l-)—ll-s——f f(y)in |yy1| dn
s N A ay a

This procedure can be generalized (see also appendix D in reference 4)
so that for :

jfb, 2y)ays _ [P flyay _ 3 fb £(51)ays (159
a (m¥)?® Yady wnvy  yda nvy

This definition of the symbol f can be made in another way. If the
indefinite integral is expressible in the form

hig d,
JF —£Z£l—zé = G(y1,y) + constant
(y1-7)

then
b
f(y.)dys

> G(b:Y) - G(a:Y) (lt5b)
(y1-7)

i

a

Thus the conventional rules for evaluating a definite integral from the
indefinite integral can be used.

~ Using equation (45b), ome can derive by integration by parts the
relation .
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-j[b £(y1,0)852 _ £(b) _ #(a) _fb £1(y1,0)dy1
Jo  (y1-)2 e =y

Hence the equation for I, becomes

| b £(y;,0)dys o R
I, = e s+ x £, (3,0) (b5c)
° jg (y1y)® i | )

By means of the concepts introduced by equations (45), I can be
evaluated® and finally wy can be written

for OimliB,O§m2<m

vy __/B5m” ap
Vo PR
' (=) 2+ (e—t,) =2 Ap/q
ze [y fa, b ke (46a)
H1HaT = — (t—t.) — r
ST T A e £
Similarly, for O < mo <B, 0 <m<w
E:—Méﬁg(g’n) +
Vo 4 q
By (e—e.) B2 -
_my+mp j[dnlJI dé, ) T ety) he  op/g (46p)
)"'mlluz 1, 1 7% 7, : |
[(T]"'ll) o~ (ety) EJ

and, finally, for B< m <oBf<mM<w
my mo
-x - = N
- ml+m2ﬁ (n-n1) ™ +» (g §1) ™ p/q

' 2
Vo brizne (n-n1) i% _ (g_gl) E;'J r,

dgl dn; _ (46c)

81In the evaluation of ' I the term representlng f(y1,2) can be wr'itten

as a function of z2. Hence, the term ‘nfz(y,o) in equation (45c)

vanishes.




26 NACA TN 2252

Again the special cases of equations (46) when £,q become X,y
or r,s are given in the following summary (see equations (49) and

(52)).
Summary of Formula for w and Cp in the Plane of the Wing

For the x,y coordinates.— In these cases ¢—>%, ¥y =1, m—>0,
and mp > w..

(x—=x1)My(x1,71)
C. =2xr(x,y) =2/ dx1{ dy u -2 (47a)
1Y B u nf. lf:; 1 [(X_xl)z_az(y_yl)z]s/a '
(x—=1)Mu(x1,y1)
Cp=—2 [dyf axg — = (47)
i 8 f T [ (x=x1)2-83(yy1)21%/%

B p2 A0 (x1,71)
w, = — 5 Mu(x,y) "_fdxl-deI : (47c)
4 2 ’ an T [(X_Xl)z_ﬁz(y_yl)z]a/e

A9(x1,y1)
W, = —=— [dy dx (48)
oo lfr U ) 7 (r52)2 1/

%’E = - % 2 (x,y)+ Ll;j[dxl dya (xx1) (ap/a) (49a)
© T (3=31)2/ (x=x1 ) 282 (3—y1)2
vy 1 (x-x1) (&p/q) :
— I — dysz dx; . (L&)b)
Vo bn j[': (Y—Yl)z/(x—xl)e—ﬁz(y—Y1)2

For the r,s coordinates.— . In these cases ¢ =T, 1 -5, m =3,
and mp —>fB.

1 r—ry }+(5-s -
Cp = - = j[JF (r—ra)+( 1) Xu(rl,sl)drldsl (50)

[(r-r1) (s—s1)1%/2
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~ the integrands of the integrals
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My A®(ry,sy)dridsy ‘ : S
Yu = g (51)
E B () (5-e0) 1972

(52)

vy _ 8 f [(r=ri)+(s—s1)] (4p/q)aridsy
[(s—sl)—(r—rl)lz/ (r-r1)(s-s1)

It should be empha51zed that in the r,s coordinate system the order of
integration is immaterial.

SOME ALTERNATIVE EXPRESSIONS

It is sometlmes very convenient to be able to express the equatlons

 given in the previous sections in a slightly different form. Consider,

for example, equation (ll) which gives the velocity potential due to a
distribution of sources, thus

1 wy(x1,¥y1)dxa1dys wing plan V1
3 form ! —

e " - G w wwe hee e

where the area T can be defined P(x,y,0)
(see sketch) as the area bounded
by the wing plan form? and the
forecone from the point P(x,y,z).
Define now the area T, as being
the area bounded by the plane

x=x3 and the wing plan form
ahead of the plane x=x; (see
sketch). It is apparent that r,
is a pure real quantity everywhere
inside the area T and is a pure Y1
imaginary quantity everywhere out— '
side T and inside T,. The same

is true, of course, of r.S. It L= -
is clear that all other terms in

X1

P(X;Y)O)

which have been considered in the
preceding section, in particular
wy(x1,y1) in equation (11), are

X3

%The actual definltion o'f T, that 1t ig the area W1th1n the Mach fore—
cone, is often replaced by the one used -here smce the strengths of the
sources, etc., are zero ahead of the wing.
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always real over the entire wing plan forms. Hence the integral

- _f fwu(xl,Yl)d-xlle

is a complex quantity, the real part of which is the velocity potential;

thus
dx;d,
q) = - -J-'- r.p.ffWu(XI,yl) = Yl (53)
7t r rc )

Similarly, each of the integrals in equations (47) and (48) may be
replaced by the real parts of their values taken over the area T,.

The evaluation of the terms involving the finite part are particu—
larly simple when the T, area is used since, if

(a-y) /%

then for positive a and b # a

z'.p.JFb M = r.p. [F(b) - F(o)] (54)
- Vo (a—Y)3/2

For example, consider

A A r,p,fb__:@__
(a%y2)%/2 ° (a%-y2)%/*

where a < b. From the relation

f y2dy = J — arc sin N
a

( a2_y2 ) 3/2 / aZ__yQ

together with equation (5k)

I=r-p-<—-—£—-—arc sin%):—g-
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Notice the simple extension that

Jfa___fﬂ_=r,p, fb-__y_z_d_y___h',,
a (a2y2)%/2 b (a2y2)%/?

Further examples using the real part of the inﬁegration taken over
the area T, Will be given in the next section on special applications.

SPECTAL APPLICATIONS
An Integral Equation

Applications of the results given by equations (48) through (52) are
apparent. One of the more important uses, however, comes in the develop—
ment of integral equations necessary for the solution of many supersonic

. wing theory problems. : '

‘ An example of such an application
R arises in the analysis of the slender F'S
» rectangular wing at an angle of attack
0. - Since the wing chord is long com— ;>/
pared to its span, and since along the "////
side edges the loading falls to zero,
. an approximation to Ap/q is given by
the equation :

Z

2 -kt 13/ (55)

where f(x/s) 1is an unknown func—
tion. The assumption made when .
using equation (55) 1is, of course,
to fix the spanwise variation of
loading but leave the chordwise
variation arbitrary.

The function f can be determined by the condition that the value
of wy 1in equation (49a) is a constant all along the center line of the
wing. The area T 18 indicated by the shaded region in the last sketch
so that equation (49a) for the case y=0 (and for added simplicity
B=1l) becomes for x > s
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% =“a'f<§>+ %Lx—? (X—Xl)f<%>dxlfss l-(YI/S)edY1

712/ (x=x1)%-71%

b1

o % (4 X1 = [ 1(5n/s)® &y
/;_S (X Xl)f(s >Xm‘£(X-Xl) YlZJ—(—XiL:I_l_)z——Yl_;

and for 0< x< s

- 1
Vo e x—x1) y12/(x—=x1)%-y:1%

Tu_ _gr <§’> + %fx(x—xn.)f <%>dx il Y l—(yl/s)z dya
o

Introduce the notation

X3 X
6y =5 6 =5 ka1 616
- 6

i
|

<1|c:il

and these equations become,® since «

[e]
—

for 0<6<1

s
1]

0
£(6) + %f kBof( 61)d6;
(o]

for 1< 6 ' &(56)

=
il

5 e 5 ~ 6—1
£(0) + ;t-f koBof(61)d61+ ?j E.f(6,)d6;
6—1 o

J

S5The symbols B and E indicate elliptic integrals. Thus

1 1k 22 1 dt *
EI]. =/c: —]:——'t? at; Kn =L 3 and

J (142) (12 +3)

_ En“( 1-kp 2) Kh
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The solutionrto these equations has been obtained numerically and
s has the form shown in the sketch,

Since from equation (55) the
average. spanwise loading P can

be readily calculated as f(e)
8
p-2i 4D dy = mnf(:§‘>
2s [ 4 . 5

the curve for average span loading @

can easily be constructed. This \ 7 e
curve is also shown in a sketch '
together with a portion of the
variation of P. obtained from an

exact linearized analysis.

exact linearized

In the interval where the compar—

ison can be made (i.e., near the from eq. (h7)
leading edge) the agreement will P<§->
be the poorest because in this

- region the spanwise variation
deviates most radically from the
value assumed in the construction

of the integral equation.

0§

Drag Reversibility Theorem

The well-known theorem that the drag of a symmetrical nonlifting
body is the same in forward and reversed flight at the same speed (see
reference 5 or 6) can be derived in another way using the results of the
preceding sections,

By definition , -
o o=§ [ [ ey a ENCI

where

S area of the wing

My slope of the upper surface

CP pressure coefficient

Using equation (47Tb),
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Cp = _-S&’?fs [y @ EENEA _J€l ax; (x_xllk‘;(xl;Y1) } (58) ,

c

Al

Now the equation for the drag coefficient in reversed flow can be
obtained by:

1. Replacing the area T, by T, such that T, + 7, =8
2. Rotating the axial system in the xy plane through 180°

3. Reversing the signs of xu(x,y) and Ay(x1,y1)

There results

oo = ot [ foutmiy ax[rn. [an f am ZEIETS i)

2 c

and subtracting equation (59) from (58) gives

CD—CD = - —):-l.- TePe dy dx dyl dX]_ xxu(xl:YI)xu(x:Y) +
r Sn g r,®

* r-P-/;de de dylf ax, X:L)vu(xxl-;zﬂlu(x:}’) (60)

Since the symbols X3,y1,X,y are dummy variasbles of integration, the
last term in equation (60) can be written .

4 4 d.x. ay [ dx xxu(x)Y)Xu(xl)YI)
Sx r'P'L ylf 1/; J r. 3

and reversing the operators [dy: [fdx; and [dy fdx (but always
preserving the same order within the operation) yields for the second
term in equation (60) the same expression as the first term except for
sign. Hence

CD — CDr = O
or

as was to be shown.
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Lift on Wings With Supersonic Edges

The 1ift on any wing can be written

Moreover,

‘where T.E. and L.E. denote _
the trailing edge and leading edge, \

. respectively, and @ g g is the
value of the Ve1001ty pofentlal on
the upper surface of the wing at
the trailing edge.

Consider now a wing with all
edges supersonic and a straight
trailing edge not necessarily at
right angles to the free—stream
direction., Iet the wing be a
plate having arbitrary twist and
camber, Then for a point on the
wing,the velocity potential from:
equation (53) can be written

B A o wylxa,y1)dxidys
q) =_";ropo

./ (2x1)28%(3-71)2

and 1f the equation of the traillng edge is ‘f'

x=a4+ytan A

‘where a 1s some constant, then

)

. o . - "i‘Qf"f'l T;p : wu(X1;Y1) Xm dY1
P E. =~ % TePe
, , / (a+y tanA—xl)z—Ba(y Yl)z

so that the total 1lift on the wing can be written




34 NACA TN 2252

L N 2 wy(x1,¥1)dx1dys
i B
° s1 U5 Y [(aty tan A-x1)2-p3(y—1)?

The area S, being that of the wing plan form, does not depend on ¥y

so the y integration can be made first and, since the edges of the wing
are supersonic, the interval s1 <y < s must always contain the roots
Ar and Az of the expression under the radical. Hence

dy Az , dy

S
eDe =
f—s J (82— tan® A) a-3) (7h2) M/ (8% tan® A)(Ma—y) (y02)

and since
J[ x
1,/ Xl—Y)(Y—%z)
then
| L — wu(X1,71)
.q = ————-——-—————-ff —————-——u ‘]}’yl dxldyl (61)
J B2~ tan2A Js o
An alternative expression for equation (61) is
e
Cy, = (62)

N BZ— tan®A

where & 1is the average angle of attack of the surface and by defini—
tion
— VH(Xl yi)
Q = — 2 dxi1dya (63)
S g Vo

It is interesting to notice that the 1ift coefficient for such a wing is
the same as that for a two-dimensional flat plate flying at an angle of
attack ao into a free stream, the speed of which is given by the com—
ponent of velocity normal to the trailing edge of the three—dimensional
wing Jjust studied., This result has been derived previously in refer—
ence T.

Ames Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Moffett Field, Calif., Oct. 16, 1950.
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